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Hoare logics are proof systems that allow one to formally establish properties of computer programs. Traditional

Hoare logics prove properties of individual program executions (such as functional correctness). Hoare logic

has been generalized to prove also properties of multiple executions of a program (so-called hyperproperties,

such as determinism or non-interference). These program logics prove the absence of (bad combinations of)

executions. On the other hand, program logics similar to Hoare logic have been proposed to disprove program

properties (e.g., Incorrectness Logic), by proving the existence of (bad combinations of) executions. All of

these logics have in common that they specify program properties using assertions over a fixed number of

states, for instance, a single pre- and post-state for functional properties or pairs of pre- and post-states for

non-interference.

In this paper, we present Hyper Hoare Logic, a generalization of Hoare logic that lifts assertions to properties

of arbitrary sets of states. The resulting logic is simple yet expressive: its judgments can express arbitrary

program hyperproperties, a particular class of hyperproperties over the set of terminating executions of a

program (including properties of individual program executions). By allowing assertions to reason about

sets of states, Hyper Hoare Logic can reason about both the absence and the existence of (combinations of)

executions, and, thereby, supports both proving and disproving program (hyper-)properties within the same

logic, including (hyper-)properties that no existing Hoare logic can express. We prove that Hyper Hoare Logic

is sound and complete, and demonstrate that it captures important proof principles naturally. All our technical

results have been proved in Isabelle/HOL.
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1 INTRODUCTION

Hoare Logic [Floyd 1967; Hoare 1969] is a logic designed to formally prove functional correctness of

computer programs. It enables proving judgments (so-called Hoare triples) of the form {%} � {&},

where � is a program command, and % (the precondition) and & (the postcondition) are assertions

over execution states. The Hoare triple {%} � {&} is valid if and only if executing � in an initial

state that satisfies % can only lead to final states that satisfy & .

Hoare Logic is widely used to prove the absence of runtime errors, functional correctness,

resource bounds, etc. All of these properties have in common that they are properties of individual

program executions. However, classical Hoare Logic cannot reason about properties of multiple

program executions (so-called hyperproperties [Clarkson and Schneider 2008]), such as determinism
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(executing the program twice in the same initial state results in the same final state) or information

flow security, which is often phrased as non-interference [Volpano et al. 1996] (executing the

program twice with the same low-sensitivity inputs results in the same low-sensitivity outputs). To

overcome such limitations and to reason about more types of properties, Hoare Logic has been

extended and adapted in various ways. We refer to those extensions and adaptations collectively as

Hoare logics.

Among them are several logics that can establish properties of two [Aguirre et al. 2017; Amtoft

et al. 2006; Benton 2004; Costanzo and Shao 2014; Eilers et al. 2023; Ernst and Murray 2019; Francez

1983; Maillard et al. 2019; Naumann 2020; Yang 2007] or even : [D’Osualdo et al. 2022; Sousa and

Dillig 2016] executions of the same program, where : > 2 is useful for properties such as transitivity

and associativity. Relational Hoare logics are able to prove relational properties, i.e., properties relating

executions of two (potentially different) programs, for instance, to prove program equivalence.

All of these logics have in common that they can prove only properties that hold for all (combina-

tions of) executions, that is, they prove the absence of bad (combinations of) executions; to achieve

that, their judgments overapproximate the possible executions of a program. Overapproximate

logics cannot prove the existence of (combinations of) executions, and thus cannot establish certain

interesting program properties, such as the presence of a bug or non-determinism.

To overcome this limitation, recent work [de Vries and Koutavas 2011;Murray 2020; O’Hearn 2019;

Raad et al. 2020, 2022] proposed Hoare logics that can prove the existence of (individual) executions,

for instance, to disprove functional correctness. We call such Hoare logics underapproximate. Tools

based on underapproximate Hoare logics have proven useful for finding bugs on an industrial

scale [Blackshear et al. 2018; Distefano et al. 2019; Gorogiannis et al. 2019; Le et al. 2022]. More

recent work has proposed Hoare logics that combine underapproximate and overapproximate

reasoning for single executions, such as Outcome Logic [Zilberstein et al. 2023] and Exact Separation

Logic [Maksimović et al. 2023], and for ∀∗∃∗-hyperproperties, such as RHLE [Dickerson et al. 2022].

Another recent work, BiKAT [Antonopoulos et al. 2023], can be used to prove ∀∃-properties

between two programs �1 and �2, by providing an alignment witness, that overapproximates

the behavior of �1 and underapproximates the behavior of �2, and proving that, satisfies a

relevant ∀∀-property, which the authors demonstrate by providing inference rules for foward and

backward simulations (∀∃-properties). BiKAT can also in principle be used to prove ∃∀-properties,

by essentially proving the negation of a ∀∃-property, i.e., by proving that no such alignment witness

, exists, but the authors provide no inference rules for ∃∀-properties.

The problem. Fig. 1 presents a (non-exhaustive) overview of the landscape of Hoare logics, where

logics are classified in two dimensions: the type of properties they can establish, and the number

of program executions those properties can relate. The table reveals two open problems. First,

some types of hyperproperties cannot be expressed by any existing Hoare logic (represented by ∅).

For example, to prove that a program violates generalized non-interference, one needs to show

that there exist two executions g1 and g2 such that all executions with the same high-sensitivity

input as g1 have a different low-sensitivity output than g2.
1 Such ∃∗∀∗-hyperproperties cannot

be proved by any existing Hoare logic. Second, the existing logics cover different, often disjoint

program properties, which may hinder practical applications: reasoning about a wide spectrum

of properties of a given program requires the application of several logics, each with its own

judgments; properties expressed in different, incompatible logics cannot be composed within the

same proof system.

1Assuming no public (low-sensitivity) input.
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Number of executions

Type 1 2 k ∞

Overapproximate (hypersafety) ✓ HL, OL, RHL, CHL, RHLE, MHRM, BiKAT ✓ RHL, CHL, RHLE, MHRM, BiKAT ✓ CHL, RHLE ✓ ∅

Backward underapproximate ✓ IL, InSec, BiKAT ✓ InSec, BiKAT ✓ ∅ ✓ ∅

Forward underapproximate ✓ OL, RHLE, MHRM, BiKAT ✓ RHLE, MHRM, BiKAT ✓ RHLE ✓ ∅

∀∗∃∗ not applicable ✓ RHLE, MHRM, BiKAT ✓ RHLE ✓ ∅

∃∗∀∗ not applicable ✓ BiKAT ✓ ∅ ✓ ∅

Set properties not applicable not applicable not applicable ✓ ∅

Fig. 1. (Non-exhaustive) overview of Hoare logics, classified in two dimensions: The type of properties a logic
can establish, and the number of program executions these properties can relate (column “∞” subsumes an
unbounded and an infinite number of executions). In our extended version [Dardinier and Müller 2023], we
explain the distinction between backward and forward underapproximate properties, and we give examples
of (hypersafety and set) properties for an unbounded number of executions. ∀∗∃∗- and ∃∗∀∗-hyperproperties
are discussed in Sect. 2. A green checkmark indicates that a property is handled by our Hyper Hoare Logic
for the programming language defined in Sect. 3.1, and ∅ indicates that no other Hoare logic supports it. The
acronyms refer to the following. CHL: Cartesian Hoare Logic [Sousa and Dillig 2016], HL: Hoare Logic [Floyd
1967; Hoare 1969], IL: Incorrectness Logic [O’Hearn 2019] or Reverse Hoare Logic [de Vries and Koutavas
2011], InSec: Insecurity Logic [Murray 2020], OL: Outcome Logic [Zilberstein et al. 2023], RHL: Relational
Hoare Logic [Benton 2004], RHLE [Dickerson et al. 2022], MHRM [Maillard et al. 2019], BiKAT [Antonopoulos
et al. 2023].

This work. We present Hyper Hoare Logic, a novel Hoare logic that enables proving or disprov-

ing any program hyperproperty, a particular class of hyperproperties over the set of terminating

executions of a program (formally defined in Sect. 3.5), which includes properties of individual

program executions. In the rest of this paper, when the context is clear, we use hyperproperties to

refer to program hyperproperties. As indicated by the green checkmarks in Fig. 1, these include

many different types of properties, relating any (potentially unbounded or even infinite) number of

program executions, and many hyperproperties that no existing Hoare logic can handle. Among

them are ∃∗∀∗-hyperproperties such as violations of generalized non-interference (Sect. 4.3), and

hyperproperties relating an unbounded or infinite number of executions such as quantifying infor-

mation flow based on Shannon entropy or min-capacity [Assaf et al. 2017; Shannon 1948; Smith

2009; Yasuoka and Terauchi 2010] (we give an example in our extended version [Dardinier and

Müller 2023]). Moreover, Hyper Hoare Logic offers rules to compose hyper-triples with different

types of hyperproperties, such as ∃∀ with ∀∀, or ∀∀∃ with ∀∀.

Hyper Hoare Logic is based on a simple yet powerful idea: We lift pre- and postconditions

from assertions over a fixed number of execution states to hyper-assertions over sets of execution

states. Hyper Hoare Logic then establishes hyper-triples of the form {%} � {&}, where % and & are

hyper-assertions. Such a hyper-triple is valid iff for any set of initial states ( that satisfies % , the set

of all final states that can be reached by executing � in some state from ( satisfies & . By allowing

assertions to quantify universally over states, Hyper Hoare Logic can express overapproximate

properties, whereas existential quantification expresses underapproximate properties. Combinations

of universal and existential quantification in the same assertion, as well as assertions over infinite

sets of states, allow Hyper Hoare Logic to prove or disprove properties beyond existing logics.

Contributions. Our main contributions are:

• We present Hyper Hoare Logic, a novel Hoare logic that can prove or disprove arbitrary

hyperproperties over terminating executions.

• We formalize our logic and prove soundness and completeness in Isabelle/HOL [Nipkow et al.

2002].
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• We derive easy-to-use syntactic rules for a restricted class of syntactic hyper-assertions, as

well as additional loop rules that capture different reasoning principles.

• We prove compositionality rules for hyper-triples, which enable the flexible composition of

hyper-triples of different forms and, thus, facilitate modular proofs.

• We demonstrate the expressiveness of Hyper Hoare Logic, both on judgments of existing

Hoare logics and on hyperproperties that no existing Hoare logic supports. We also prove

in Isabelle/HOL that hyper-triples capture precisely program hyperproperties, and that any

invalid hyper-triple can be disproved by proving another hyper-triple.

Outline. Sect. 2 informally presents hyper-triples, and shows how they can be used to specify

hyperproperties. Sect. 3 introduces the rules of Hyper Hoare Logic, proves that these rules are

sound and complete for establishing valid hyper-triples, defines program hyperproperties, proves

that hyper-triples capture precisely those, and proves that invalid hyper-triples can be disproved

by proving other hyper-triples. Secs. 4 and 5 derive additional rules that enable concise proofs

in common cases. We discuss related work in Sect. 6 and conclude in Sect. 7. Our extended ver-

sion [Dardinier and Müller 2023] contains further details and extensions. In particular, we show how

to express judgments of existing logics in Hyper Hoare Logic, and present compositionality rules.

All our technical results (Secs. 3, 4, 5, and the extended version) have been proved in Isabelle/HOL

[Nipkow et al. 2002], and our mechanization is publicly available [Dardinier 2023; Dardinier and

Müller 2024].

2 HYPER-TRIPLES, INFORMALLY

In this section, we illustrate how hyper-triples can be used to express different types of hyperprop-

erties, including over- and underapproximate hyperproperties for single (Sect. 2.1) and multiple

(Sect. 2.2 and Sect. 2.3) executions.

2.1 Overapproximation and Underapproximation

Consider the command �0 ≜ (x ≔ randIntBounded (0, 9)), which generates a random integer

between 0 and 9 (both included), and assigns it to the variable G . Its functional correctness properties

include: (P1) The final value of G is in the interval [0, 9], and (P2) every value in [0, 9] can occur for

every initial state (i.e., the output is not determined by the initial state).

Property P1 expresses the absence of bad executions, in which the output G is outside the interval

[0, 9]. This property can be expressed in classical Hoare logic, with the triple {⊤} �0 {0 ≤ G ≤ 9}.

In Hyper Hoare Logic, where assertions are properties of sets of states, we express it using a

postcondition that universally quantifies over all possible final states: In all final states, the value of

G should be in [0, 9]. The hyper-triple {⊤} �0 {∀⟨i
′⟩. 0 ≤ i ′(G) ≤ 9} expresses this property. The

postcondition, written in the syntax that will be introduced in Sect. 4, is semantically equivalent

to {_( ′.∀i ′ ∈ ( ′. 0 ≤ i ′(G) ≤ 9}. This hyper-triple means that, for any set ( of initial states i

(satisfying the trivial precondition ⊤), the set ( ′ of all final states i ′ that can be reached by

executing �0 in some initial state i ∈ ( satisfies the postcondition, i.e., all final states i ′ ∈ ( ′

have a value for G between 0 and 9. This hyper-triple illustrates a systematic way of expressing

classical Hoare triples as hyper-triples (as shown in our extended version [Dardinier and Müller

2023]). Property P2 expresses the existence of desirable executions and can be expressed using an

underapproximate Hoare logic. In Hyper Hoare Logic, we use a postcondition that existentially

quantifies over all possible final states: For each = ∈ [0, 9], there exists a final state where G = =.

The hyper-triple {∃⟨i⟩.⊤} �0 {∀=. 0 ≤ = ≤ 9 ⇒ ∃⟨i ′⟩. i ′(G) = =} expresses P2. The precondition

is semantically equivalent to {_(. ∃i ∈ (}. It requires the set ( of initial states to be non-empty

(otherwise the set of states reachable from states in ( by executing�0 would also be empty, and the
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postcondition would not hold). The postcondition ensures that, for any = ∈ [0, 9], it is possible to

reach at least one state i ′ with i ′(G) = =.

This example shows that hyper-triples can express both under- and overapproximate properties,

which allows Hyper Hoare Logic to reason about both the absence of bad executions and the

existence of good executions. Moreover, hyper-triples can also be used to prove the existence of

incorrect executions, which has proven useful in practice to find bugs without false positives [Le

et al. 2022; O’Hearn 2019]. To the best of our knowledge, the only other Hoare logics that can

express both properties P1 and P2 are Outcome Logic [Zilberstein et al. 2023], Exact Separation

Logic [Maksimović et al. 2023], and BiKAT [Antonopoulos et al. 2023].2 However, the two first are

limited to properties of single executions, and the latter to properties relating two executions. Thus,

these logics cannot handle the general class of :-safety hyperproperties, which we discuss next.

2.2 (Dis-)Proving :-Safety Hyperproperties

A :-safety hyperproperty [Clarkson and Schneider 2008] is a property that characterizes all combi-

nations of : executions of the same program. An important example is information flow security,

which requires that programs that manipulate secret data (such as passwords) do not expose secret

information to their users. In other words, the content of high-sensitivity (secret) variables must not

leak into low-sensitivity (public) variables. For deterministic programs, information flow security

is often formalized as non-interference (NI) [Volpano et al. 1996], a 2-safety hyperproperty: Any

two executions of the program with the same low-sensitivity (low for short) inputs (but potentially

different high-sensitivity inputs) must have the same low outputs. That is, for all pairs of executions

g1, g2, if g1 and g2 agree on the initial values of all low variables, they must also agree on the final

values of all low variables. This ensures that the final values of low variables are not influenced

by the values of high variables. Assuming for simplicity that we have only one low variable ; , the

hyper-triple {low(;)} �1 {low(;)}, where low(;) ≜ (∀⟨i1⟩, ⟨i2⟩. i1 (;) = i2 (;)), expresses that �1

satisfies NI: If all states in ( have the same value for ; , then all final states reachable by executing

�1 in any initial state i ∈ ( will have the same value for ; . Note that this set-based definition is

equivalent to the standard definition based on pairs of executions; Instantiating ( with a set of two

states directly yields the standard definition.

Non-interference requires that all final states have the same value for ; , irrespective of the initial

state that leads to any given final state. Other :-safety hyperproperties need to relate initial and

final states. For example, the program y ≔ f (x) is monotonic iff for any two executions with

i1 (G) ≥ i2 (G), we have i
′
1
(~) ≥ i ′

2
(~), where i1 and i2 are the initial states i

′
1
and i ′

2
are the

corresponding final states. To relate initial and final states, Hyper Hoare Logic uses logical variables

(also called auxiliary variables [Kleymann 1999]). These variables cannot appear in a program, and

thus are guaranteed to have the same values in the initial and final states of an execution. We

use this property to tag corresponding states, as illustrated by the hyper-triple for monotonicity:

{monoCG } y ≔ f (x) {monoC~}, where monoCG ≜ (∀⟨i1⟩, ⟨i2⟩. i1 (C) = 1 ∧ i2 (C) = 2 ⇒ i1 (G) ≥

i2 (G)). Here, C is a logical variable used to distinguish the two executions of the program.

Disproving :-safety hyperproperties. As explained in the introduction, being able to prove that a

property does not hold is valuable in practice, because it allows building tools that can find bugs with-

out false positives. Hyper Hoare Logic is able to disprove hyperproperties by proving a hyperproperty

that is essentially its negation. For example, we can prove that the insecure program �2 ≜ (if (ℎ >

0) {l ≔ 1} else {l ≔ 0}), where ℎ is a high variable, violates non-interference (NI), using the follow-

ing hyper-triple: {low(;) ∧ (∃⟨i1⟩, ⟨i2⟩. i1 (ℎ) > 0 ∧ i2 (ℎ) ≤ 0)} �2 {∃⟨i ′
1
⟩, ⟨i ′

2
⟩. i ′

1
(;) ≠ i ′

2
(;)}.

2While RHLE [Dickerson et al. 2022] can in principle reason about the existence of executions, it is unclear how to express

the existence for all numbers =.
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The postcondition is the negation of the postcondition for �1 above, hence expressing that �2

violates NI. Note that the precondition needs to be stronger than for �1. Since the postcondition

has to hold for all sets that satisfy the precondition, we have to require that the set of initial states

includes two states that will definitely lead to different final values of ; .

The general class of :-safety hyperproperties includes properties that relate more than 2 ex-

ecutions, such as transitivity (: = 3) and associativity (: = 4) [Sousa and Dillig 2016]. The only

other Hoare logic that can be used to both prove and disprove arbitrary :-safety hyperproperties

is RHLE [Dickerson et al. 2022], since it supports ∀∗∃∗-hyperproperties, which includes both hy-

persafety (that is, ∀∗) properties and their negation (that is, ∃∗-hyperproperties). However, RHLE

does not support ∃∗∀∗-hyperproperties, and thus cannot disprove ∀∗∃∗-hyperproperties such as

generalized non-interference, as we discuss next.

2.3 Beyond :-Safety

NI is widely used to express information flow security for deterministic programs, but is overly

restrictive for non-deterministic programs. For example, the command �3 ≜ (y ≔ nonDet (); l ≔

h + y) is information flow secure. Since the secret ℎ is added to an unbounded non-deterministically

chosen integer ~, any secret ℎ can result in any3 value for the public variable ; and, thus, we cannot

learn anything certain about ℎ from observing the value of ; . However, because of non-determinism,

�3 does not satisfy NI: Two executions with the same initial values for ; could get different values

for ~, and thus have different final values for ; .

Information flow security for non-deterministic programs (such as �3) is often formalized as

generalized non-interference (GNI) [McCullough 1987; McLean 1996], a security notion weaker than

NI. GNI allows two executions g1 and g2 with the same low inputs to have different low outputs,

provided that there is a third execution g with the same low inputs that has the same high inputs as

g1 and the same low outputs as g2. That is, the difference in the low outputs between g1 and g2 cannot

be attributed to their secret inputs.4 The non-deterministic program �3 satisfies GNI, which can

be expressed via the hyper-triple5 {low(;)} �3 {∀⟨i
′
1
⟩, ⟨i ′

2
⟩. ∃⟨i ′⟩. i ′(ℎ) = i ′

1
(ℎ) ∧ i ′(;) = i ′

2
(;)}.

The final states i ′
1
and i ′

2
correspond to the executions g1 and g2, respectively, and i

′ corresponds

to execution g .

As before, the expressivity of hyper-triples enables us not only to express that a program satisfies

complex hyperproperties such as GNI, but also that a program violates them. For example, the

program �4 ≜ (y ≔ nonDet (); assume y ≤ 9; l ≔ h + y), where the first two statements model

a non-deterministic choice of ~ smaller or equal to 9, leaks information: Observing for example

; = 20 at the end of an execution, one can deduce that ℎ ≥ 11 (because ~ ≤ 9). We can formally

express that �4 violates GNI using the following hyper-triple:6

{low(;) ∧ (∃⟨i1⟩, ⟨i2⟩. i1 (ℎ) ≠ i2 (ℎ))} �4 {∃⟨i
′
1
⟩, ⟨i ′

2
⟩.∀⟨i ′⟩. i ′(ℎ) = i ′

1
(ℎ) ⇒ i ′(;) ≠ i ′

2
(;)}

The postcondition implies the negation of the postcondition we used previously to express GNI. As

before, we had to strengthen the precondition to prove this violation.

GNI is a ∀∀∃-hyperproperty, whereas its negation is an ∃∃∀-hyperproperty. To the best of our

knowledge, Hyper Hoare Logic is the only Hoare logic that can both prove and disprove GNI. In

3This property holds for both unbounded and bounded arithmetic.
4GNI is often formulated without the requirement that g1 and g2 have the same low inputs, e.g., in Clarkson and

Schneider [2008]. This alternative formulation can also be expressed in Hyper Hoare Logic, with the hyper-triple

{∀⟨i ⟩. i (;in) = i (;) } �3 {∀⟨i′
1
⟩, ⟨i′

2
⟩. ∃⟨i′⟩. i′ (ℎ) = i′

1
(ℎ) ∧ i′ (;in) = i′

2
(;in) ∧ i′ (;) = i′

2
(;) }. The precondition

binds, in each state, the initial value of ; to the logical variable ;in, which enables the postcondition to refer to the

initial value of ; .
5We assume here for simplicity that ℎ is not modified by�3.
6Still assuming that ℎ is not modified.
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fact, we will see in Sect. 3.5 that all hyperproperties over terminating program executions can be

proven or disproven with Hyper Hoare Logic.

3 HYPER HOARE LOGIC

In this section, we present the programming language used in this paper (Sect. 3.1), formalize

hyper-triples (Sect. 3.2), present the core rules of Hyper Hoare Logic (Sect. 3.3), prove soundness

and completeness of the logic w.r.t. hyper-triples (Sect. 3.4), formally characterize the expressivity of

hyper-triples (Sect. 3.5), and discuss additional rules for composing proofs (Sect. 3.6). All technical

results presented in this section have been formalized in Isabelle/HOL.

3.1 Language and Semantics

We present Hyper Hoare Logic for the following imperative programming language:

Definition 1. Program states and programming language. A program state (ranged over by

f) is a mapping from local variables (in the set PVars) to values (in the set PVals): The set of program

states PStates is defined as the set of total functions from PVars to PVals: PStates ≜ PVars → PVals.

Program commands � are defined by the following syntax, where G ranges over variables in the set

PVars, 4 over expressions (modeled as total functions from PStates to PVals), and 1 over predicates over

states (total functions from PStates to Booleans):

� F skip | x ≔ e | x ≔ nonDet () | assume b | �; � | � +� | �∗

The skip, assignment, and sequential composition commands are standard. The command

assume b acts like skip if 1 holds and otherwise stops the execution. Instead of including de-

terministic if-statements and while loops, we consider a non-deterministic choice �1 + �2 and a

non-deterministic iteration �∗, which are more expressive. Combined with the assume command,

they can express deterministic if-statements and while loops as follows:

if (1) {�1} else {�2} ≜ (assume b; �1) + (assume ¬b; �2)

if (1) {�} ≜ (assume b; �) + (assume ¬b)

while (1) {�} ≜ (assume b; �)∗; assume ¬b

Our language also includes a non-deterministic assignment y ≔ nonDet () (also called havoc),

which allows us to model unbounded non-determinism. Together with assume, it can for instance

model the generation of random numbers between bounds: y ≔ randIntBounded (a, b) can be

modeled as y ≔ nonDet (); assume a ≤ y ≤ b.

The big-step semantics of our language is standard, and formally defined in our extended

version [Dardinier and Müller 2023]. The rule for x ≔ nonDet () allows G to be updated with

any value E . assume b leaves the state unchanged if 1 holds; otherwise, the semantics gets stuck

to indicate that there is no execution in which 1 does not hold. The command �1 + �2 non-

deterministically executes either �1 or �2. �
∗ non-deterministically either performs another loop

iteration or terminates.

Note that our language does not contain any command that could fail (in particular, expression

evaluation is total, such that division-by-zero and other errors cannot occur). Runtime failures

could easily be modeled by instrumenting the program with a special Boolean variable err that

tracks whether a runtime error has occurred and skips the rest of the execution if this is the case.

3.2 Hyper-Triples, Formally

As explained in Sect. 2, the key idea behind Hyper Hoare Logic is to use properties of sets of states

as pre- and postconditions, whereas traditional Hoare logics use properties of individual states
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207:8 Thibault Dardinier and Peter Müller

(or of a given number : of states in logics for hyperproperties). Considering arbitrary sets of

states increases the expressivity of triples substantially; for instance, universal and existential

quantification over these sets corresponds to over- and underapproximate reasoning, respectively.

Moreover, combining both forms of quantification allows one to express advanced hyperproperties,

such as generalized non-interference (see Sect. 2.3).

To allow the assertions of Hyper Hoare Logic to refer to logical variables (motivated in Sect. 2.2),

we include them in our notion of state.

Definition 2. Extended states. An extended state (ranged over by i) is a pair of a logical state

(a total mapping from logical variables to logical values) and a program state:

ExtStates ≜ (LVars → LVals) × PStates

Given an extended state i , we write i! to refer to the logical state and i% to refer to the program state,

that is, i = (i!, i% ).

We use the same meta variables (G , ~, I) for program and logical variables. When it is clear from

the context that G ∈ PVars (resp. G ∈ LVars), we often write i (G) to denote i% (G) (resp. i! (G)).

The assertions of Hyper Hoare Logic are predicates over sets of extended states:

Definition 3. Hyper-assertions. A hyper-assertion (ranged over by % , & , ') is a total function

from P(ExtStates) to Booleans.

A hyper-assertion % entails a hyper-assertion& , written % |= & , iff all sets that satisfy % also satisfy& :

(% |= &) ≜ (∀(. % (() ⇒ & (())

We formalize hyper-assertions as semantic properties, which allows us to focus on the key ideas

of the logic. In Sect. 4, we will define a syntax for hyper-assertions, which will allow us to derive

simpler rules than the ones presented in this section.

To formalize the meaning of hyper-triples, we need to relate them formally to the semantics of

our programming language. Since hyper-triples are defined over extended states, we first define a

semantic function sem that lifts the operational semantics to extended states; it yields the set of

extended states that can be reached by executing a command � from a set of extended states ( :

Definition 4. Extended semantics.

sem(�, () ≜ {i | ∃f. (i!, f) ∈ ( ∧ ⟨�, f⟩ → i% }

The following lemma states several useful properties of the extended semantics.

Lemma 1. Properties of the extended semantics.

(1) sem(�, (1 ∪ (2) = sem(�, (1) ∪ sem(�, (2)

(2) ( ⊆ ( ′ ⇒ sem(�, () ⊆ sem(�, ( ′)

(3) sem(�,
⋃

G 5 (G)) =
⋃

G sem(�, 5 (G))

(4) sem(skip, () = (

(5) sem(�1; �2, () = sem(�2, sem(�1, ())

(6) sem(�1 +�2, () = sem(�1, () ∪ sem(�2, ()

(7) sem(�∗, () =
⋃

=∈N sem(�=, () where �=
≜ �; . . . ; �
︸    ︷︷    ︸

n times

Using the extended semantics, we can now define the meaning of hyper-triples.

Definition 5. Hyper-triples. Given two hyper-assertions % and & , and a command � , the hyper-

triple {%} � {&} is valid, written |={%} � {&}, iff for any set ( of initial extended states that satisfies

% , the set sem(�, () of extended states reachable by executing � in some state from ( satisfies & :

|={%} � {&} ≜ (∀(. % (() ⇒ & (sem(�, ()))
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(Skip)
⊢{% } skip {% }

⊢{% } �1 {' } ⊢{' } �2 {& }
(Seq)

⊢{% } �1; �2 {& }

⊢{% } �1 {&1 } ⊢{% } �2 {&2 }
(Choice)

⊢{% } �1 +�2 {&1 ⊗&2 }

% |= % ′ &′ |= & ⊢{% ′ } � {&′ }
(Cons)

⊢{% } � {& }

(Assume)
⊢{_(. % ( {i | i ∈ ( ∧ 1 (i% ) }) } assume b {% }

∀G. (⊢{%G } � {&G })
(Exist)

⊢{∃G. %G } � {∃G.&G }

(Assign)
⊢{_(. % ( {i | ∃U ∈ (. i!

= U! ∧ i%
= U% [G ↦→ 4 (i% ) ] }) } x ≔ e {% }

⊢{�= } � {�=+1 }
(Iter)

⊢{�0 } �
∗ {

⊗

=∈N �= }

(Havoc)
⊢{_(. % ( {i | ∃U ∈ (. ∃E. i!

= U! ∧ i%
= U% [G ↦→ E ] }) } x ≔ nonDet () {% }

Fig. 2. Core rules of Hyper Hoare Logic. The meaning of the operators ⊗ and
⊗

=∈N are defined in Def. 6
and Def. 7, respectively.

This definition is similar to classical Hoare logic, where the initial and final states have been

replaced by sets of extended states. As we have seen in Sect. 2, hyper-assertions over sets of

states allow our hyper-triples to express properties of single executions and of multiple executions

(hyperproperties), as well as to perform overapproximate reasoning (like e.g., Hoare Logic) and

underapproximate reasoning (like e.g., Incorrectness Logic).

3.3 Core Rules

Fig. 2 shows the core rules of Hyper Hoare Logic. Skip, Seq, Cons, and Exist are analogous to

traditional Hoare logic. Assume, Assign, and Havoc are straightforward given the semantics of

these commands. All three rules work backward. In particular, the precondition of Assume applies

the postcondition % only to those states that satisfy the assumption 1. By leaving the value E

unconstrained, Havoc considers as precondition the postcondition % for all possible values for G .

The three rules Assume, Assign, and Havoc are optimized for expressivity; we will derive in Sect. 4

syntactic versions of these rules, which are less expressive, but easier to apply.

The rule Choice (for non-deterministic choice) is more involved. Most standard Hoare logics

use the same assertion & as postcondition of all three triples. However, such a rule would not be

sound in Hyper Hoare Logic. Consider for instance an application of this hypothetical Choice rule

where both % and& are defined as _(. |( | = 1, expressing that there is a single pre- and post-state. If

commands �1 and �2 are deterministic, the antecedents of the rule can be proved because a single

pre-state leads to a single post-state. However, the non-deterministic choice will in general produce

two post-states, such that the postcondition is violated.

To account for the effects of non-determinism on the sets of states described by hyper-assertions,

we obtain the postcondition of the non-deterministic choice by combining the postconditions of its

branches. As shown by Lemma 1 (point 6), executing the non-deterministic choice �1 +�2 in the

set of states ( amounts to executing �1 in ( and �2 in ( , and taking the union of the two resulting

sets of states. Thus, if &1 (sem(�1, ()) and &2 (sem(�2, ()) hold then the postcondition of �1 +�2

must characterize the union sem(�1, () ∪ sem(�2, () The postcondition of the rule Choice, &1 ⊗ &2,

achieves that:

Definition 6. A set ( satisfies &1 ⊗ &2 iff it can be split into two (potentially overlapping) sets (1
and (2 (the sets of post-states of the branches), such that (1 satisfies &1 and (2 satisfies &2:

(&1 ⊗ &2) (() ≜ (∃(1, (2 . ( = (1 ∪ (2 ∧&1 ((1) ∧&2 ((2))
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207:10 Thibault Dardinier and Peter Müller

The rule Iter for non-deterministic iterations generalizes our treatment of non-deterministic

choice. It employs an indexed loop invariant � , which maps a natural number = to a hyper-assertion

�= . �= characterizes the set of states reached after executing = times the command� in a set of initial

states that satisfies �0. Analogously to the rule Choice, the indexed invariant avoids using the same

hyper-assertion for all non-deterministic choices. The precondition of the rule’s conclusion and

its premise prove (inductively) that the triple {�0} �
= {�=} holds for all =. �= thus characterizes the

set of reachable states after exactly = iterations of the loop. Since our loop is non-deterministic

(i.e., has no loop condition), the set of reachable states after the loop is the union of the sets of

reachable states after each iteration. The postcondition of the conclusion captures this intuition, by

using the generalized version of the ⊗ operator to an indexed family of hyper-assertions:

Definition 7. A set ( satisfies
⊗

=∈N �= iff it can be split into
⋃

8 5 (8) = 5 (0) ∪ . . . ∪ 5 (8) ∪ . . .,

where 5 (8) (the set of reachable states after exactly 8 iterations) satisfies �8 (for each 8 ∈ N):

(
⊗

=∈N �=) (() ≜ (∃5 . (( =
⋃

=∈N 5 (=)) ∧ (∀= ∈ N. �= (5 (=))))

Note that this rule makes Hyper Hoare Logic a partial correctness logic: it only considers an

unbounded, but finite number = of loop iterations. In our extended version [Dardinier and Müller

2023], we present an alternative, stronger definition of hyper-triples, which express the existence

of a terminating execution from any initial state, and corresponding inference rules (proven sound

in our Isabelle/HOL mechanization) such as a rule for while loops based on a loop variant. We also

discuss a possible extension of Hyper Hoare Logic to prove non-termination, i.e., the existence of

non-terminating executions.

3.4 Soundness and Completeness

We have proved in Isabelle/HOL that Hyper Hoare Logic is sound and complete. That is, every

hyper-triple that can be derived in the logic is valid, and vice versa. Note that Fig. 2 contains only

the core rules of Hyper Hoare Logic. These are sufficient to prove completeness; all rules presented

later in this paper are only useful to make proofs more succinct and natural.

Theorem 1. Soundness. Hyper Hoare Logic is sound:

If ⊢{%} � {&} then |={%} � {&}.

Proof sketch. We prove ∀%,&. ⊢{%} � {&} ⇒ |={%} � {&} by straightforward structural

induction on � . The cases for skip, �1; �2, �1 +�2, and �
∗, directly follow from Lemma 1. □

Theorem 2. Completeness. Hyper Hoare Logic is complete:

If |={%} � {&} then ⊢{%} � {&}.

Proof sketch. We prove � (�) ≜ (∀%,&. |={%} � {&} ⇒ ⊢{%} � {&}) by structural induction

over� . We show the case for� ≜ �1 +�2; the proof for the non-deterministic iteration is analogous,

and the other cases are standard or straightforward.

We assume � (�1) and � (�2), and want to prove � (�) where � ≜ �1 + �2. As we illustrate

after this proof sketch, we need to consider each possible value + of the set of extended states

( separately. For an arbitrary value + , we define %+ ≜ (_(. % (() ∧ ( = + ), '1
+
≜ (_(. ( =

sem(�1,+ ) ∧ % (+ )), and '2
+
≜ (_(. ( = sem(�2,+ )). We get ⊢{%+ } �1 {'1

+
} from � (�1) and

⊢{%+ } �2 {'2
+
} from � (�2). By applying the rule Choice, we get ⊢{%+ } � {'1

+
⊗ '2

+
}. Since

we prove this triple for an arbitrary value + (that is, for all + ), we can apply the rule Exist, to

obtain ⊢{∃+ . %+ } � {∃+ . '1
+
⊗ '2

+
}. % clearly entails ∃+ . %+ , and the postcondition ∃+ . '1

+
⊗ '2

+

entails (_(. ∃+ . % (+ ) ∧ ( = sem(�1,+ ) ∪ sem(�2,+ )), which precisely describes the sets of states

sem(�1 + �2,+ ) (see Lemma 1(6)) where + satisfies % , and thus entails & . By rule Cons, we get

⊢{%} � {&}, which concludes the case. □
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Note that our completeness theorem is not concerned with the expressivity of the assertion

language because we use semantic hyper-assertions (i.e., functions, see Def. 3). Similarly, by using

semantic entailments in the rule Cons, we decouple the completeness of Hyper Hoare Logic from

the completeness of the logic used to derive entailments.

Interestingly, the logic would not be complete without the core rule Exist, as we illustrate with

the following simple example:

Example 1. Let iE be the state that maps G to E and all other variables to 0. Let %E ≜ (_(. ( =

{iE}). Clearly, the hyper-triples {%0} skip {%0}, {%2} skip {%2}, {%0} x ≔ x + 1 {%1}, and

{%2} x ≔ x + 1 {%3} are all valid. We would like to prove the hyper-triple {%0 ∨ %2} skip + (x ≔

x + 1) {_(. ( = {i0, i1} ∨ ( = {i2, i3}}. That is, either %0 holds before, and then we have ( = {i0, i1}

afterwards, or %2 holds before, and then we have ( = {i2, i3} afterwards. However, using the rule

Choice only, the most precise triple we can prove is

⊢{%0 ∨ %2} skip {%0 ∨ %2} ⊢{%0 ∨ %2} x ≔ x + 1 {%1 ∨ %3}
(Choice)

⊢{%0 ∨ %2} skip + (x ≔ x + 1) {(%0 ∨ %2) ⊗ (%1 ∨ %3)}

The postcondition (%0 ∨ %2) ⊗ (%1 ∨ %3) is equivalent to (%0 ⊗ %1) ∨ (%0 ⊗ %3) ∨ (%2 ⊗ %1) ∨ (%2 ⊗ %3),

i.e., _(. ( = {i0, i1} ∨( = {i0, i3} ∨( = {i2, i1} ∨( = {i2, i3}. We thus have two spurious disjuncts,

%0 ⊗ %3 (i.e., ( = {i0, i3}) and %2 ⊗ %1 (i.e., ( = {i2, i1}).

This example shows that the rule Choice on its own is not precise enough for the logic to be

complete; we need at least a disjunction rule to distinguish the two cases %0 and %2. In general,

however, there might be an infinite number of cases to consider, which is why we need the rule

Exist. The premise of this rule allows us to fix a set of states ( that satisfies some precondition % and

to prove the most precise postcondition for the precondition _( ′. ( = ( ′; combining these precise

postconditions with an existential quantifier in the conclusion of the rule allows us to obtain the

most precise postcondition for the precondition % .

For our example, we can use the rule Exist with a Boolean 1 that records whether %0 or %2 is

satisfied initially, as follows:

⊢{(1⇒%0)∧(¬1⇒%2) } skip {(1⇒%0)∧(¬1⇒%2) } ⊢{(1⇒%0)∧(¬1⇒%2) } x ≔ x + 1 {(1⇒%1)∧(¬1⇒%3) }
(Choice)

⊢{(1⇒%0)∧(¬1⇒%2) } skip + (x ≔ x + 1) {( (1⇒%0)∧(¬1⇒%2)) ⊗ ( (1⇒%1)∧(¬1⇒%3)) }
(Exist)

⊢{∃1. (1⇒%0)∧(¬1⇒%2)
︸                         ︷︷                         ︸

=%0∨%2

} skip + (x ≔ x + 1) {∃1. ( (1⇒%0)∧(¬1⇒%2)) ⊗ ( (1⇒%1)∧(¬1⇒%3))

=(%0⊗%2 )∨(%1⊗%3 )

}

3.5 Expressivity of Hyper-Triples

In the previous subsection, we have shown that Hyper Hoare Logic is sound and complete to

establish the validity of hyper-triples, and, thus, Hyper Hoare Logic is as expressive as hyper-triples.

We now show that hyper-triples are expressive enough to capture arbitrary hyperproperties over

finite program executions. A hyperproperty [Clarkson and Schneider 2008] is traditionally defined

as a property of sets of traces of a system, that is, of sequences of system states. Since Hoare logics

typically consider only the initial and final state of a program execution, we use a slightly adapted

definition here:

Definition 8. Program hyperproperties. A program hyperproperty is a set of sets of pairs of

program states, i.e., an element of P(P(PStates × PStates)).

A command � satisfies the program hyperpropertyH iff the set of all pairs of pre- and post-states

of � is an element of H : {(f, f ′) | ⟨�, f⟩ → f ′} ∈ H .
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Equivalently, a program hyperproperty can be thought of as a predicate over P(PStates×PStates).

Note that this definition subsumes properties of single executions, such as functional correctness

properties.

In contrast to traditional hyperproperties, our program hyperproperties describe only the finite

executions of a program, that is, those that reach a final state. An extension of Hyper Hoare Logic

to infinite executions might be possible by defining hyper-assertions over sets of traces rather than

sets of states; we leave this as future work. In the rest of this paper, when the context is clear, we

use hyperproperties to refer to program hyperproperties.

Any program hyperproperty can be expressed as a hyper-triple in Hyper Hoare Logic:

Theorem 3. Expressing hyperproperties as hyper-triples. Let H be a program hyperproperty.

Assume that the cardinality of LVars is at least the cardinality of PVars, and that the cardinality of

LVals is at least the cardinality of PVals.

Then there exist hyper-assertions % and & such that, for any command � , � ∈ H iff |={%} � {&}.

Proof sketch. We define the precondition % such that the set of initial states contains all

program states, and the values of all program variables in these states are recorded in logical

variables (which is possible due to the cardinality assumptions). Since the logical variables are not

affected by the execution of � , they allow & to refer to the initial values of any program variable,

in addition to their values in the final state. Consequently, & can describe all possible pairs of pre-

and post-states. We simply define & to be true iff the set of these pairs is contained in H . □

We also proved the converse: every hyper-triple describes a program hyperproperty. That is,

hyper-triples capture exactly the hyperproperties over finite executions.

Theorem 4. Expressing hyper-triples as hyperproperties. For any hyper-assertions % and & ,

there exists a hyperproperty H such that, for any command � , � ∈ H iff |={%} � {&}.

Proof sketch. We define H ≜ {Σ | ∀(. % (() ⇒ & ({(;, f ′) | ∃f. (;, f) ∈ ( ∧ (f, f ′) ∈ Σ})}. □

Combined with our completeness result (Thm. 2), this theorem implies that, if a command �

satisfies a hyperpropertyH then there exists a proof of it in Hyper Hoare Logic. More surprisingly,

our logic also allows us to disprove any hyperproperty: If � does not satisfy H then � satisfies

the complement ofH , which is also a hyperproperty, and thus can also be proved. Consequently,

Hyper Hoare Logic can prove or disprove any program hyperproperty as defined in Def. 8.

Since hyper-triples express hyperproperties (Thm. 3 and Thm. 4), the ability to disprove any

hyperproperty implies that Hyper Hoare Logic can also disprove any hyper-triple. More precisely,

one can always use Hyper Hoare Logic to prove that some hyper-triple {%} � {&} is invalid, by

proving the validity of another hyper-triple {% ′} � {¬&}, where % ′ is a satisfiable hyper-assertion

that entails % . Conversely, the validity of such a hyper-triple {% ′} � {¬&} implies that all hyper-

triples {%} � {&} (with % weaker than % ′) are invalid. The following theorem precisely expresses

this observation:

Theorem 5. Disproving hyper-triples. Given % , � , and & , the following two propositions are

equivalent:

(1) |={%} � {&} does not hold.

(2) There exists a hyper-assertion % ′ that is satisfiable, entails % , and |={% ′} � {¬&}.

Proof sketch. By negating Def. 5, we get that point (1) is equivalent to the existence of a set of

extended states ( such that % (() holds but & (sem(�, ()) does not, i.e., ¬& (sem(�, ()) holds. Let

% ′
≜ (_( ′. ( = ( ′). % ′ is clearly satisfiable. Moreover, point (1) implies that % ′ entails % , and that

|={% ′} � {¬&} holds. Thus, (1) implies (2).
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Assuming (2), we get that there exists a set of extended states ( such that % ′(() (since % ′ is

satisfiable) and ¬& (sem(�, ()) hold. Since % ′ entails % , % (() holds, which implies (1). □

We need to strengthen % to % ′ in point (2), because there might be some sets ( , ( ′ that both satisfy

% , such that & (sem(�, ()) holds, but & (sem(�, ( ′)) does not. This was the case for our examples

in Sect. 2.2 and Sect. 2.3; for instance, one of the preconditions there was strengthened to include

∃⟨i1⟩, ⟨i2⟩. i1 (ℎ) ≠ i2 (ℎ).

Thm. 5 is another illustration of the expressivity of Hyper Hoare Logic. The correspond-

ing result does not hold in traditional Hoare logics. For example, (1) the classical Hoare triple

{⊤} x ≔ nonDet () {G ≥ 5} does not hold, but (2) there is no satisfiable % such that {%} x ≔

nonDet () {¬(G ≥ 5)} holds. Moreover, to disprove this triple, one needs to show the existence

of an execution that satisfies the negated postcondition, which is not expressible in HL. In con-

trast, Hyper Hoare Logic can disprove the classical Hoare triple by proving the hyper-triple

{∃⟨i⟩.⊤} x ≔ nonDet () {¬(∀⟨i⟩. i (G) ≥ 5)}.

The correspondence between hyper-triples and program hyperproperties (Thm. 3 and Thm. 4),

together with our completeness result (Thm. 2) precisely characterizes the expressivity of Hyper

Hoare Logic. In our extended version [Dardinier and Müller 2023], we show systematic ways to

express the judgments of existing over- and underapproximating Hoare logics as hyper-triples.

3.6 Compositionality

The core rules of Hyper Hoare Logic allow one to prove any valid hyper-triple, but not necessarily

compositionally. As an example, consider the sequential composition of a command�1 that satisfies

generalized non-interference (GNI) with a command �2 that satisfies non-interference (NI). We

would like to prove that �1; �2 satisfies GNI (the weaker property). As discussed in Sect. 2.3, a

possible postcondition for �1 is GNI
ℎ
;
≜ (∀⟨i1⟩, ⟨i2⟩. ∃⟨i⟩. i1 (ℎ) = i (ℎ) ∧ i (;) = i2 (;)), while a

possible precondition for�2 is low(;) ≜ (∀⟨i1⟩, ⟨i2⟩. i1 (;) = i2 (;)). Unfortunately, the correspond-

ing hyper-triples for �1 and �2 cannot be composed using the core rules. In particular, rule Seq

cannot be applied (even in combination with Cons), since the postcondition of �1 does not imply

the precondition of �2. Note that this observation does not contradict completeness: By Thm. 2, it

is possible to prove more precise triples for �1 and �2, such that the postcondition of �1 matches

the precondition of�2. However, to enable modular reasoning, our goal is to construct the proof by

composing the given triples for the individual commands rather than deriving new ones.

We have proved (in Isabelle/HOL) a number of useful compositionality rules for hyper-triples [Dar-

dinier and Müller 2023]. These rules are admissible in Hyper Hoare Logic, in the sense that they do

not modify the set of valid hyper-triples that can be proved. Rather, they enable flexible compositions

of hyper-triples. As an example, we have proved the following compositionality rule

⊢{%} � {&}
(BigUnion)

⊢{
⊗

%} � {
⊗

&}

where
⊗

% ≜ (_(. ∃� . (( =
⋃

(′∈� (
′) ∧ (∀( ′ ∈ � . % (( ′))). This rule is useful when we have a set

of states ( that does not directly satisfy the precondition % , but that can be decomposed as a union

of smaller sets ( ′ that individually satisfy % . After executing� , we get a set of states that is a union

of smaller sets that individually satisfy & .

In our aforementioned example, we have a set of states ( that satisfies the postcondition

∀⟨i1⟩, ⟨i2⟩. ∃⟨i⟩. i1 (ℎ) = i (ℎ) ∧ i (;) = i2 (;) of �1. While ( does not necessarily satisfy the

precondition low(;) of�2, ( can be seen as a union of smaller sets of states {i, i2} that individually

satisfy the precondition of �2. Thus, using the compositionality rule BigUnion, we obtain after �2 a

set of states that is a union of smaller sets that all satisfy the postcondition of �2, from which we
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(AssignS)
⊢{A4

G [% ] } x ≔ e {% }
(HavocS)

⊢{HG [% ] } x ≔ nonDet () {% }
(AssumeS)

⊢{Π1 [% ] } assume b {% }

Fig. 3. Some syntactic rules of Hyper Hoare Logic. The syntactic transformations A4
G [�] and HG [�] are

defined in Def. 10, and the syntactic transformation Π1 [_] is defined in Def. 11.

can then prove the desired postcondition GNIℎ
;
for �1; �2.

7 The full proof of this example is shown

in our extended version [Dardinier and Müller 2023], along with another challenging example.

4 SYNTACTIC RULES

The core rules presented in Sect. 3 are optimized for expressivity: They are sufficient to prove any

valid hyper-triple (Thm. 2), but not necessarily in the simplest way. In particular, the rules for

atomic statements Assume, Assign, and Havoc require a set comprehension in the precondition,

which is necessary when dealing with arbitrary semantic hyper-assertions. However, by imposing

syntactic restrictions on hyper-assertions, we can derive simpler rules, as we show in this section.

In Sect. 4.1, we define a syntax for hyper-assertions, in which the set of states occurs only as

range of universal and existential quantifiers. As we have seen in Sect. 2 and formally show in

our extended version [Dardinier and Müller 2023], this syntax is sufficient to capture many useful

hyperproperties. Moreover, it allows us to derive simple rules for assignments (Sect. 4.2) and assume

statements (Sect. 4.3). All rules presented in this section have been proven sound in Isabelle/HOL.

4.1 Syntactic Hyper-Assertions

We define a restricted class of syntactic hyper-assertions, which can interact with the set of states

only through universal and existential quantification over its states:

Definition 9. Syntactic hyper-expressions and hyper-assertions.

Hyper-expressions 4 are defined by the following syntax, where i ranges over states, G over (program

or logical) variables, ~ over quantified variables, 2 over literals, ⊕ over binary operators (such as +,−, ∗

for integers, ++ for lists, etc.), and 5 denotes functions from values to values (such as len for lists):

e F 2 | ~ | i% (G) | i! (G) | 4 ⊕ 4 | 5 (4)

Syntactic hyper-assertions � are defined by the following syntax, where 4 ranges over hyper-

expressions, 1 over boolean literals, and ⪰ over binary operators (such as =,≠, <, >, ≤, ≥, . . .):

� F 1 | 4 ⪰ 4 | � ∨� | � ∧� | ∀~.� | ∃~.� | ∀⟨i⟩. � | ∃⟨i⟩. �

Note that hyper-expressions are different from program expressions, since the latter can only

refer to program variables of a single implicit state (e.g., G = ~ + I), while the former can explicitly

refer to different states (e.g., i (G) = i ′(G)). Negation ¬� is defined recursively in the standard

way. We also define (� ⇒ �) ≜ (¬� ∨ �), emp ≜ (∀⟨i⟩.⊥), and □? ≜ (∀⟨i⟩. ? (i)), where ? is a

state8 expression. The evaluation of hyper-expressions and satisfiability of hyper-assertions are

formally defined in our extended version [Dardinier and Müller 2023].

4.2 Syntactic Rules for Deterministic and Non-Deterministic Assignments

In classical Hoare logic, we obtain the precondition of the rule for the assignment x ≔ e by

substituting G by 4 in the postcondition. The Hyper Hoare Logic syntactic rule for assignments

7We also need to prove that�2 does not drop executions depending on the value of ℎ.
8State expressions refer to a single (implicit) state. In contrast to program expressions, they may additionally refer to logical

variables and use quantifiers over values.
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AssignS (Fig. 3) generalizes this idea by repeatedly applying this substitution for every quanti-

fied state. This syntactic transformation, written A4
G [_] is defined below. As an example, for the

assignment x ≔ y + z and postcondition ∃⟨i⟩.∀⟨i ′⟩. i (G) ≤ i ′(G), we obtain the precondition

A
~+I
G [∃⟨i⟩.∀⟨i ′⟩. i (G) ≤ i ′(G)] = (∃⟨i⟩.∀⟨i ′⟩. i (~) + i (I) ≤ i ′(~) + i ′(I)).

Similarly, our syntactic rule for non-deterministic assignments HavocS substitutes every oc-

currence of i (G), for every quantified state i , by a fresh quantified variable E . This variable is

universally quantified for universally-quantified states, capturing the intuition that we must con-

sider all possible assigned values. In contrast, E is existentially quantified for existentially-quantified

states, because it is sufficient to find one suitable behavior of the non-deterministic assignment. As

an example, for the non-deterministic assignment x ≔ nonDet () and the aforementioned postcon-

dition, we obtain the precondition HG [∃⟨i⟩.∀⟨i
′⟩. i (G) ≤ i ′(G)] = (∃⟨i⟩. ∃E .∀⟨i ′⟩.∀E ′. E ≤ E ′).

Definition 10. Syntactic transformations for assignments.

A4
G [�] yields the hyper-assertion �, where i (G) is syntactically substituted by 4 (i) for all (existen-

tially or universally) quantified states i . The two main cases are:

A4
G [∀⟨i⟩. �] ≜

(

∀⟨i⟩.A4
G [�[4 (i)/i (G)]]

)

A4
G [∃⟨i⟩. �] ≜

(

∃⟨i⟩.A4
G [�[4 (i)/i (G)]]

)

where �[~/G] refers to the standard syntactic substitution of G by ~. Other cases apply A4
G recursively

(e.g., A4
G [� ∧ �] ≜ A4

G [�] ∧ A4
G [�]). See Dardinier and Müller [2023] for the full definition.

HG [�] yields the hyper-assertion � where i (G) is syntactically substituted by a fresh quantified

variable E , universally (resp. existentially) quantified for universally (resp. existentially) quantified

states. The two main cases are (where E is fresh):

HG [∀⟨i⟩. �] ≜ (∀⟨i⟩.∀E .HG [�[E/i (G)]]) HG [∃⟨i⟩. �] ≜ (∃⟨i⟩. ∃E .HG [�[E/i (G)]])

Other cases applyHG recursively. See Dardinier and Müller [2023] for the full definition.

4.3 Syntactic Rules for Assume Statements

Intuitively, assume b provides additional information when proving properties for all states,

but imposes an additional requirement when proving the existence of a state. This intuition is

captured by the rule AssumeS shown in Fig. 3. The syntactic transformation Π1 adds the state

expression 1 as an assumption for universally-quantified states, and as a proof obligation for

existentially-quantified states. As an example, for the statement assume x ≥ 0 and the postcon-

dition ∀⟨i⟩. ∃⟨i ′⟩. i (G) ≤ i ′(G), we obtain the precondition ΠG≥0 [∀⟨i⟩. ∃⟨i
′⟩. i (G) ≤ i ′(G)] =

(∀⟨i⟩. i (G) ≥ 0 ⇒ (∃⟨i ′⟩. i ′(G) ≥ 0 ∧ i (G) ≤ i ′(G))).

Definition 11. Syntactic transformation for assume statements.

The two main cases of Π1 are

Π1 [∀⟨i⟩. �] ≜ (∀⟨i⟩. 1 (i) ⇒ Π1 [�]) Π1 [∃⟨i⟩. �] ≜ (∃⟨i⟩. 1 (i) ∧ Π1 [�])

Other cases apply Π1 recursively. See Dardinier and Müller [2023] for the full definition.

Example. We now illustrate the use of our three syntactic rules for atomic statements in Fig. 4,

to prove that the program �4 ≜ (y ≔ nonDet (); assume y ≤ 9; l ≔ h + y) from Sect. 2.2 violates

GNI. This program leaks information about the secret ℎ through its public output ; because the pad

it uses (variable ~) is upper bounded. From the output ; , we can derive a lower bound for the secret

value of ℎ, namely ℎ ≥ ; − 9.

To see why �4 violates GNI, consider two executions with different secret values for ℎ, and

where the execution for the larger secret value sets ~ to exactly 9. This execution will produce a

larger public output ; (since the other execution adds at most 9 to its smaller secret). Hence, these

executions can be distinguished by their public outputs.
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{∃⟨i1 ⟩, ⟨i2 ⟩. i1 (ℎ) ≠ i2 (ℎ) }

{∃⟨i1 ⟩. (∃⟨i2 ⟩. (∀⟨i ⟩. ∀E. E ≤ 9 ⇒ (i (ℎ) = i1 (ℎ) ⇒ i2 (ℎ) + 9 > i (ℎ) + E))) } (Cons)

{∃⟨i1 ⟩. ∃E1 . E1 ≤ 9 ∧ (∃⟨i2 ⟩. ∃E2 . E2 ≤ 9 ∧ (∀⟨i ⟩. ∀E. E ≤ 9 ⇒ ((i (ℎ) ≠ i1 (ℎ)) ∨ (i (ℎ) + E ≠ i2 (ℎ) + E2)))) } (Cons)

y ≔ nonDet () ;

{∃⟨i1 ⟩. i1 (~) ≤ 9 ∧ (∃⟨i2 ⟩. i2 (~) ≤ 9 ∧ (∀⟨i ⟩. i (~) ≤ 9 ⇒ (i (ℎ) ≠ i1 (ℎ) ∨ i (ℎ) + i (~) ≠ i2 (ℎ) + i2 (~)))) } (HavocS)

assume y ≤ 9;

{∃⟨i1 ⟩, ⟨i2 ⟩. ∀⟨i ⟩. i (ℎ) ≠ i1 (ℎ) ∨ i (ℎ) + i (~) ≠ i2 (ℎ) + i2 (~) } (AssumeS)

l ≔ h + y

{∃⟨i1 ⟩, ⟨i2 ⟩. ∀⟨i ⟩. i (ℎ) ≠ i1 (ℎ) ∨ i (;) ≠ i2 (;) } (AssignS)

Fig. 4. Proof outline showing that the program violates generalized non-interference. The rules used at each
step of the derivation are shown on the right (the use of rule Seq is implicit).

Our proof outline in Fig. 4 captures this intuitive reasoning in a natural way. We start with the

postcondition that corresponds to the negation of GNI, and work our way backward, by successively

applying our syntactic rules AssignS, AssumeS, and HavocS. We conclude using the rule Cons: Since

the precondition implies the existence of two states with different values for ℎ, we first instantiate

i1 and i2 such that i1 and i2 are both members of the set of initial states, and i2 (ℎ) > i1 (ℎ).
9 We

then instantiate E2 = 9, such that, for any E ≤ 9, i2 (ℎ) + E2 > i (ℎ) + E , which concludes the proof.

5 PROOF PRINCIPLES FOR LOOPS

To reason about standard while loops, we can derive from the core rule Iter in Fig. 2 the rule

WhileDesugared, shown in Fig. 5 (recall that while (1) {�} ≜ (assume b; �)∗; assume ¬b). While

this derived rule is expressive, it has two main drawbacks for usability: (1) Because of the use of the

infinitary
⊗

=∈N, it requires non-trivial semantic reasoning (via the consequence rule), and (2) the

invariant �= relates only the executions that perform at least = iterations, but ignores executions

that perform fewer.

To illustrate problem (2), imagine that we want to prove that the hyper-assertion low(;) ≜

(∀⟨i⟩.∀⟨i ′⟩. i (;) = i ′(;)) holds after a while loop. A natural choice for our loop invariant �=
would be �= ≜ low(;) (independent of =). However, this invariant does not entail our desired

postcondition low(;). Indeed,
⊗

=∈N low(;) holds for a set of states iff it is a union of sets of states

that all individually satisfy low(;). This property holds trivially in our example (simply choose one

set per possible value of ; ) and, in particular, does not express that the entire set of states after the

loop satisfies low(;). Note that this does not contradict completeness (Thm. 2), but simply means

that a stronger invariant �= is needed.

In this section, we thus present three more convenient loop rules, shown in Fig. 5, which capture

powerful reasoning principles, and overcome those limitations: The ruleWhileSync (Sect. 5.1) is

the easiest to use, and can be applied whenever all executions of the loop have the same control

flow. Two additional rules for while loops can be applied whenever the control flow differs. The

rule While-∀∗∃∗ (Sect. 5.2) supports ∀∗∃∗ postconditions, while the rule While-∃ (Sect. 5.3) handles

postconditions with a top-level existential quantifier. In our experience, these loop rules cover all

practical hyper-assertions that can be expressed in our syntax. We are not aware of any practical

program hyperproperty that requires multiple quantifier alternations.

9Note that the quantified states i1, i2 and i from different hyper-assertions can be unrelated. That is, the witnesses for i1

and i2 in the first hyper-assertion [∃⟨i1 ⟩, ⟨i2 ⟩. i1 (ℎ) ≠ i2 (ℎ) ] are not necessarily the same as the ones in the second

hyper-assertion [∃⟨i1 ⟩. ∃⟨i2 ⟩. i2 (ℎ) > i1 (ℎ) ], which is why the entailment holds.
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⊢{�= } assume b; � {�=+1 } ⊢{
⊗

=∈N �= } assume ¬b {& }
(WhileDesugared)

⊢{�0 } while (1) {� } {& }

� |= low (1) ⊢{� ∧ □1 } � {� }
(WhileSync)

⊢{� } while (1) {� } {(� ∨ emp) ∧ □(¬1) }

% |= low (1) ⊢{% ∧ □1 } �1 {& } ⊢{% ∧ □(¬1) } �2 {& }
(IfSync)

⊢{% } if (1) {�1 } else {�2 } {& }

⊢{� } if (1) {� } {� } ⊢{� } assume ¬b {& } no ∀⟨_⟩ after any ∃ in&
(While−∀∗∃∗)

⊢{� } while (1) {� } {& }

∀E. ⊢{∃⟨i ⟩. %i ∧ 1 (i) ∧ E = 4 (i) } if (1) {� } {∃⟨i ⟩. %i ∧ 4 (i) ≺ E } ∀i. ⊢{%i } while (1) {� } {&i } ≺ wf
(While−∃)

⊢{∃⟨i ⟩. %i } while (1) {� } {∃⟨i ⟩.&i }

Fig. 5. Hyper Hoare Logic rules for while loops (and branching). Recall that low(1) ≜ (∀⟨i⟩, ⟨i ′⟩. 1 (i) =

1 (i ′)) and □1 ≜ (∀⟨i⟩. 1 (i)). In the rule WhileSync, ≺ must be well-founded (wf).

5.1 Synchronized Control Flow

Standard loop invariants are sound in relational logics if all executions exit the loop simultane-

ously [Benton 2004; Terauchi and Aiken 2005]. In our logic, this synchronized control flow can be

enforced by requiring that the loop guard 1 has the same value in all states (1) before the loop and

(2) after every loop iteration, as shown by the ruleWhileSync in Fig. 5. After the loop, we get to

assume (� ∨ emp) ∧ □(¬1). That is, the loop guard 1 is false in all executions, and the invariant

� holds, or the set of states is empty. The emp disjunct corresponds to the case where the loop

does not terminate (i.e., no execution terminates). Going back to our motivating example, the

natural invariant � ≜ low(;) with the ruleWhileSync is now sufficient for our example, since we

get the postcondition (low(;) ∨ emp) ∧ □(¬1), which implies our desired (universally-quantified)

postcondition low(;). In the case where the desired postcondition quantifies existentially over

states at the top-level, it is necessary to prove that at least one execution terminates. We show the

corresponding rule in our extended version [Dardinier and Müller 2023].

We also provide a rule for if statements with synchronized control flow (rule IfSync in Fig. 5),

which can be applied when all executions take the same branch. This rule is simpler to apply than

the core rule Choice, since it avoids the ⊗ operator, which usually requires semantic reasoning.

Example. The program in Fig. 6 takes as input a list ℎ of secret values (but whose length is public),

computes its prefix sum [ℎ[0], ℎ[0] + ℎ[1], . . .], and encrypts the result by performing a one-time

pad on each element of this prefix sum, resulting in the output [ℎ[0] ⊕ :0, (ℎ[0] + ℎ[1]) ⊕ :1, . . .].

The keys :0, :1, . . . are chosen non-deterministically at each iteration, via the variable : .10

Our goal is to prove that the encrypted output ; does not leak information about the secret ele-

ments ofℎ, provided that the attacker does not have any information about the non-deterministically

chosen keys. We achieve this by formally proving that this program satisfies GNI. Since the length

of the list ℎ is public, we start with the precondition ∀⟨i1⟩, ⟨i2⟩. len(i1 (ℎ)) = len(i2 (ℎ)). This

implies that all our executions will perform the same number of loop iterations. Thus, we use

the ruleWhileSync, with the natural loop invariant � ≜ (∀⟨i1⟩, ⟨i2⟩. i1 (8) = i2 (8) ∧ len(i1 (ℎ)) =

len(i2 (ℎ)) ∧ (∃⟨i⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;))). The last conjunct corresponds to the post-

condition we want to prove, while the former entails low(8 < len(ℎ)), as required by the rule

WhileSync.

The proof of the loop body starts at the end with the loop invariant � , and works backward, using

the syntactic rules HavocS and AssignS. From � ∧□(8 < len(ℎ)), we have to prove that there exists a

value E such that i (;) ++ [(i (B) +i (ℎ) [i (8)]) ⊕ E] = i2 (;) ++ [(i2 (B) +i2 (ℎ) [i2 (8)]) ⊕ E2]. Since

10In practice, the keys used in this program should be stored somewhere, so that one is later able to decrypt the output.
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{∀⟨i1 ⟩, ⟨i2 ⟩. len(i1 (ℎ)) = len(i2 (ℎ)) }

{∀⟨i1 ⟩, ⟨i2 ⟩. 0 = 0 ∧ len(i1 (ℎ)) = len(i2 (ℎ)) ∧ (∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ [] = []) } (Cons)

s ≔ 0

l ≔ []

i ≔ 0

{∀⟨i1 ⟩, ⟨i2 ⟩. i1 (8) = i2 (8) ∧ len(i1 (ℎ)) = len(i2 (ℎ)) ∧ (∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;)) } (AssignS)

while (8 < len(ℎ)) {

{(∀⟨i1 ⟩, ⟨i2 ⟩. i1 (8) = i2 (8) ∧ len(i1 (ℎ)) = len(i2 (ℎ)) ∧ (∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;))) ∧ □(8 < len(ℎ)) }

{∀⟨i1 ⟩. ∀E1 . ∀⟨i2 ⟩. ∀E2 . i1 (8) + 1 = i2 (8) + 1 ∧ len(i1 (ℎ)) = len(i2 (ℎ))∧

(∃⟨i ⟩. ∃E. i (ℎ) = i1 (ℎ) ∧ i (;) ++ [(i (B) + i (ℎ) [i (8) ]) ⊕ E ] = i2 (;) ++ [(i2 (B) + i2 (ℎ) [i2 (8) ]) ⊕ E2 ]) } (Cons)

s ≔ s + h[i];

k ≔ nonDet () ;

l ≔ l ++ [s ⊕ k];

i ≔ i + 1;

{∀⟨i1 ⟩, ⟨i2 ⟩. i1 (8) = i2 (8) ∧ len(i1 (ℎ)) = len(i2 (ℎ)) ∧ (∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;)) } (HavocS, AssignS)

}

{( (∀⟨i1 ⟩, ⟨i2 ⟩. i1 (8) = i2 (8) ∧ len(i1 (ℎ)) = len(i2 (ℎ)) ∧ (∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;))) ∨ emp) ∧ □(8 ≥ len(ℎ)) } (WhileSync)

{∀⟨i1 ⟩, ⟨i2 ⟩. ∃⟨i ⟩. i (ℎ) = i1 (ℎ) ∧ i (;) = i2 (;) } (Cons)

Fig. 6. A proof that the program in black satisfies generalized non-interference (where the elements of list ℎ
are secret, but its length is public), using the rule WhileSync. [] represents the empty list, ++ represents list
concatenation, ℎ[8] represents the i-th element of list ℎ, and ⊕ represents the XOR operator.

i (;) = i2 (;), this boils down to proving that (i (B) +i (ℎ) [i (8)]) ⊕ E = (i2 (B) +i2 (ℎ) [i2 (8)]) ⊕ E2,

which we achieve by choosing E ≜ (i2 (B) + i2 (ℎ) [i2 (8)]) ⊕ E2 ⊕ (i (B) + i (ℎ) [i (8)]).

5.2 ∀∗∃∗-Hyperproperties

Let us now turn to the more general case, where different executions might exit the loop at

different iterations. As explained at the start of this section, the main usability issue of the rule

WhileDesugared is the precondition
⊗

=∈N �= in the second premise, which requires non-trivial

semantic reasoning. The
⊗

=∈N operator is required, because �= ignores executions that exited the

loop earlier; it relates only the executions that have performed at least = iterations. In particular, it

would be unsound to replace the precondition
⊗

=∈N �= by ∃=. �= .

a ≔ 0;
b ≔ 1;
i ≔ 0;
while (8 < =) {
tmp ≔ b;
b ≔ a + b;
a ≔ tmp;
i ≔ i + 1

}

Fig. 7. The program �fib ,
which computes the =-th
Fibonacci number.

The ruleWhile-∀∗∃∗ in Fig. 5 solves this problem for the general case

of ∀∗∃∗-postconditions. The key insight is to reason about the successive

unrollings of the while loop: The rule requires to prove an invariant � for

the conditional statement if (1) {�}, in contrast to assume b; � in the

rule WhileDesugared. This allows the invariant � to refer to all executions,

i.e., executions that are still running the loop (which will execute �), and

executions that have already exited the loop (which will not execute �).

Example. The program �fib in Fig. 7 takes as input an integer = ≥ 0

and computes the =-th Fibonacci number (in variable 0). We want to

prove that�fib is monotonic, i.e., that the =-th Fibonacci number is greater

than or equal to the<-th Fibonacci number whenever = ≥ <, without

making explicit what�fib computes. Formally, we want to prove the hyper-

triple

{∀⟨i1⟩,⟨i2⟩. i1 (C)=1∧i2 (C)=2⇒i1 (=)≥i2 (=)} �fib {∀⟨i1⟩,⟨i2⟩. i1 (C)=1∧i2 (C)=2⇒i1 (0)≥i2 (0)},

where C is a logical variable used to track the execution (as explained in Sect. 2.2).
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Intuitively, this program is monotonic because both executions will perform at least i2 (=)

iterations, during which they will have the same values for 0 and 1. The first execution will then

perform i1 (=) − i2 (=) additional iterations, during which 0 and 1 will increase, thus resulting in

larger values for 0 and 1.

We cannot use the rule WhileSync to make this intuitive argument formal, since both executions

might perform a different number of iterations. Moreover, we cannot express this intuitive argument

with the rule WhileDesugared either, since the invariant �: only relates executions that perform at

least : iterations, as explained earlier: After the first i2 (=) iterations, the loop invariant �: cannot

refer to the values of 0 and 1 in the second execution, since this execution has already exited the

loop.

However, we can use the rule While-∀∗∃∗ to prove that �fib is monotonic, with the intuitive loop

invariant � ≜ (∀⟨i1⟩,⟨i2⟩. i1 (C)=1∧i2 (C)=2

⇒ (i1 (=)−i1 (8)≥i2 (=)−i2 (8)∧i1 (0)≥i2 (0)∧i1 (1)≥i2 (1))∧□(1≥0≥0)). The first part captures

the relation between the two executions: 0 and 1 are larger in the first execution than in the second

one, and the first execution does at least as many iterations as the second one. The second part

□(1 ≥ 0 ≥ 0) is needed to prove that the additional iterations lead to larger values for 0 and 1. The

proof of this example is in our extended version [Dardinier and Müller 2023].

Restriction to ∀∗∃∗-hyperproperties. The rule While-∀∗∃∗ is quite general and powerful, since

it can be applied to prove any postcondition of the shape ∀∗∃∗, which includes all safety hyper-

properties, as well as some liveness hyperproperties such as GNI. However, it cannot be applied

for postconditions with a top-level existential quantification over states, because this would be

unsound. Indeed, a triple such as ⊢{∃⟨i⟩.∀⟨i ′⟩. � } if (1) {�} {∃⟨i⟩.∀⟨i ′⟩. � } implies that, for any

=, there exists a state i such that � holds for all states i ′ reached after unrolling the loop = times.

The key issue is that i might not be a valid witness for states i ′ reached after more than = loop

unrollings, and therefore we might have different witnesses for i for each value of =. We thus have

no guarantee that there is a global witness that works for all states i ′ after any number of loop

unrollings. To handle such examples, we present a rule for ∃∗∀∗-hyperproperties next.

5.3 ∃∗∀∗-Hyperproperties

The rule While-∀∗∃∗ can be applied for any postcondition of the form ∀∗∃∗, which includes all

safety hyperproperties as well as some liveness hyperproperties such as GNI, but cannot be applied

to prove postconditions with a top-level existential quantifier, such as postconditions of the shape

∃∗∀∗ (e.g., to prove the existence of minimal executions, or to prove that a ∀∗∃∗-hyperproperty

is violated). In this case, we can apply the rule While-∃ in Fig. 5. To the best of our knowledge,

this is the first program logic rule that can deal with ∃∗∀∗-hyperproperties for loops. This rule

splits the reasoning into two parts: First, we prove that there is a terminating state i such that

the hyper-assertion %i holds after some number of loop unrollings. This is achieved via the first

premise of the rule, which requires a well-founded relation ≺, and a variant 4 (i) that strictly

decreases at each iteration, until 1 (i) becomes false and i exits the loop.11 In a second step, we

fix the state i (since it has exited the loop), which corresponds to our global witness, and prove

⊢{%i } while (1) {�} {&i } using any loop rule. For example, if %i has another top-level existential

quantifier, we can apply the rule While-∃ once more; if %i is a ∀∗∃∗-hyper-assertion, we can apply

the ruleWhile-∀∗∃∗.

11Note that the existentially-quantified state i in the postcondition of the first premise of the rule While-∃ does not have to

be from the same execution as the one in the precondition.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 207. Publication date: June 2024.



207:20 Thibault Dardinier and Peter Müller

x ≔ 0;
y ≔ 0;
i ≔ 0;
while (8 < :) {
r ≔ nonDet ();
assume r ≥ 2;
t ≔ x;
x ≔ 2 ∗ x + r ;
y ≔ y + t ∗ r ;
i ≔ i + 1

}

Fig. 8. A programwith a
final state with minimal
values for G and ~.

As an example, consider proving that the program �< in Fig. 8 has a

final state with a minimal value for G and ~. Formally, we want to prove the

triple {¬emp ∧ □(: ≥ 0)} �< {∃⟨i⟩.∀⟨U⟩. i (G) ≤ U (G) ∧ i (~) ≤ U (~)}.

Since the set of initial states is not empty and : is always non-negative,

we know that there is an initial state with a minimal value for : . We prove

that this state leads to a final state with minimal values for G and ~, using

the ruleWhile-∃. For the first premise, we choose the variant12 : − 8 , and

the invariant %i ≜ (∀⟨U⟩. 0 ≤ i (G) ≤ U (G) ∧ 0 ≤ i (~) ≤ U (~) ∧ i (:) ≤

U (:) ∧ i (8) = U (8)), capturing both that i has minimal values for G and

~, but also that i will be the first state to exit the loop. We prove that

this is indeed an invariant for the loop, by choosing A = 2 for the non-

deterministic assignment for i . Finally, we prove the second premise with

&i ≜ (∀⟨U⟩. 0 ≤ i (G) ≤ U (G) ∧0 ≤ i (~) ≤ U (~)) and the ruleWhile-∀∗∃∗.

The proof of this example is in our extended version.

6 RELATED WORK

Overapproximate (relational) Hoare logics. Hoare Logic originated with the seminal works of Floyd

[1967] and Hoare [1969], with the goal of proving programs functionally correct. Relational Hoare

Logic [Benton 2004] (RHL) extends Hoare Logic to reason about (2-safety) hyperproperties of a

single program as well as properties relating the executions of two different programs (e.g., semantic

equivalence). RHL’s ability to relate the executions of two different programs is also useful in

the context of proving 2-safety hyperproperties of a single program, in particular, when the two

executions take different branches of a conditional statement. In comparison, Hyper Hoare Logic

can prove and disprove hyperproperties of a single program (Sect. 3.5), but requires a program

transformation to express relational properties (see our extended version [Dardinier and Müller

2023]). Extending Hyper Hoare Logic to multiple programs is interesting future work.

RHL has been extended in many ways, for example to deal with heap-manipulating [Yang 2007]

and higher-order [Aguirre et al. 2017] programs. A family of Hoare and separation logics [Amtoft

et al. 2006; Costanzo and Shao 2014; Eilers et al. 2023; Ernst and Murray 2019] designed to prove

non-interference [Volpano et al. 1996] specializes RHL by considering triples with a single program,

similar to Hyper Hoare Logic. Naumann [2020] provides an overview of the principles underlying

relational Hoare logics. Cartesian Hoare Logic [Sousa and Dillig 2016] (CHL) extends RHL to reason

about hyperproperties of : executions, with a focus on automation and scalability. CHL has recently

been reframed [D’Osualdo et al. 2022] as a weakest-precondition calculus, increasing its support

for proof compositionality. Hyper Hoare Logic can express the properties supported by CHL, in

addition to many other properties; automating Hyper Hoare Logic is future work.

Underapproximate program logics. Reverse Hoare Logic [de Vries and Koutavas 2011] is an under-

approximate variant of Hoare Logic, designed to prove the existence of good executions. The recent

Incorrectness Logic [O’Hearn 2019] adapts this idea to prove the presence of bugs. Incorrectness

Logic has been extended with concepts from separation logic to reason about heap-manipulating

sequential [Raad et al. 2020] and concurrent [Raad et al. 2022] programs. It has also been extended

to prove the presence of insecurity in a program (i.e., to disprove 2-safety hyperproperties) [Murray

2020]. Underapproximate logics have been successfully used as foundation of industrial bug-finding

tools [Blackshear et al. 2018; Distefano et al. 2019; Gorogiannis et al. 2019; Le et al. 2022]. Hyper

Hoare Logic enables proving and disproving hyperproperties within the same logic.

12We interpret ≺ as < between natural numbers, i.e., 0 ≺ 1 iff 0 ≤ 0 and 0 < 1, which is well-founded.
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Several recent works have proposed approaches to unify over- and underapproximate reasoning.

Exact Separation Logic [Maksimović et al. 2023] can establish both overapproximate and (backward)

underapproximate properties over single executions of heap-manipulating programs, by employing

triples that describe exactly the set of reachable states. Local Completeness Logic [Bruni et al. 2021,

2023] unifies over- and underapproximate reasoning in the context of abstract interpretation, by

building on Incorrectness Logic, and enforcing a notion of local completeness (no false alarm should

be produced relative to some fixed input). HL and IL have been both embedded in a Kleene algebra

with diamond operators and countable joins of tests [Möller et al. 2021]. Dynamic Logic [Harel

1979] is an extension of modal logic that can express both overapproximate and underapproximate

guarantees over single executions of a program.

Outcome Logic [Zilberstein et al. 2023] (OL) unifies overapproximate and (forward) underapprox-

imate reasoning for heap-manipulating and probabilistic programs, by combining and generalizing

the standard overapproximate Hoare triples with forward underapproximate triples. OL (instan-

tiated to the powerset monad) uses a semantic model similar to our extended semantics (Def. 4),

and a similar definition for triples (Def. 5). Moreover, a theorem similar to our Thm. 5 holds in OL,

i.e., invalid OL triples can be disproven within OL. The key difference with Hyper Hoare Logic is

that OL does not support reasoning about hyperproperties. OL assertions are composed of atomic

unary assertions, which can express the existence and the absence of certain states, but not relate

states with each other, which is key to expressing hyperproperties. OL does not provide logical

variables, on which we rely to express certain hyperproperties (see Sect. 2.2).

Logics for ∀∗∃∗-hyperproperties. Maillard et al. [2019] present a general framework for defining

relational program logics for arbitrary monadic effects (such as state, input-output, nondetermin-

ism, and discrete probabilities), for two executions of two (potentially different) programs. Their

key idea is to map pairs of (monadic) computations to relational specifications, using relational

effect observations. In particular, they discuss instantiations for ∀∀-, ∀∃-, and ∃∃-hyperproperties.

RHLE [Dickerson et al. 2022] supports overapproximate and (a limited form of) underapproxi-

mate reasoning, as it can establish ∀∗∃∗-hyperproperties, such as generalized non-interference

(Sect. 2.3) and program refinement. BiKAT [Antonopoulos et al. 2023], an algebra of alignment

for relational verification, can be used directly to prove ∀∀-properties. Moreover, ∀∃-properties

between two programs �1 and �2 can also be proved with BiKAT, by proving that a corresponding

∀∀-property holds for some alignment witness, i.e., a program that overapproximates the behav-

ior of �1 while underapproximating the behavior of �2. All three frameworks can be used to

reason about relational properties of multiple programs, whereas Hyper Hoare Logic requires

a program transformation to handle such properties. On the other hand, our logic supports a

wider range of underapproximate reasoning and can express properties not handled by any of

them, e.g., ∃∗∀∗-hyperproperties and hyperproperties relating an unbounded or infinite number

of executions. Moreover, even for ∀∗∃∗-hyperproperties, Hyper Hoare Logic provides while loop

rules that have no equivalent in these logics, such as the rulesWhile-∃ (useful in this context for

∃∗-hyperproperties) and While-∀∗∃∗ (Sect. 5).

Note that one can in principle use BiKAT to prove ∃∀-properties, by essentially proving the

negation of∀∃-properties: To prove that an ∃∀-property between two programs�1 and�2 holds, one

needs to consider all programs, that overapproximate the behavior of �1 and underapproximate

the behavior of �2, and prove that, does not satisfy a ∀∀-property.

Probabilistic Hoare logics. Many assertion-based logics for probabilistic programs have been

proposed [Barthe et al. 2018, 2019b; Corin and Den Hartog 2006; Den Hartog and de Vink 2002;

Ramshaw 1979; Rand and Zdancewic 2015]. These logics typically employ assertions over probability

(sub-)distributions of states, which bear some similarities to hyper-assertions: Asserting the existence
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(resp. absence) of a state is analogous to asserting that the probability of this state is strictly positive

(resp. zero). Taking the union of two sets of states is analogous to taking the sum of two sub-

distributions. Our operator ⊗ (Def. 6) used in the rule Choice is thus similar to the operator ⊕

from Barthe et al. [2018]. Notably, our loop rule While-∀∗∃∗ draws some inspiration from the rule

While of Barthe et al. [2018], which also requires an invariant that holds for all unrollings of the

loop. These probabilistic logics have also been extended to the relational setting [Barthe et al. 2009],

for instance to reason about the equivalence of probabilistic programs.

Verification of hyperproperties. The concept of hyperproperties has been formalized by Clarkson

and Schneider [2008]. Verifying that a program satisfies a :-safety hyperproperty can be reduced

to verifying a safety property of the self-composition of the program [Barthe et al. 2011b; Terauchi

and Aiken 2005] (e.g., by sequentially composing the program with renamed copies of itself).

Self-composition has been generalized to product programs [Barthe et al. 2011a; Eilers et al. 2019].

(Extensions of) product programs have also been used to verify relational properties such as pro-

gram refinement [Barthe et al. 2013] and probabilistic relational properties such as differential

privacy [Barthe et al. 2014]. The temporal logics LTL, CTL, and CTL*, have been extended to

HyperLTL and HyperCTL* [Clarkson et al. 2014] to specify hyperproperties, and model-checking

algorithms [Beutner and Finkbeiner 2022, 2023; Coenen et al. 2019; Hsu et al. 2021] have been

proposed to verify hyperproperties expressed in these logics, including hyperproperties outside

the safety class. Unno et al. [2021] propose an approach to automate relational verification (includ-

ing ∀∗∃∗-properties such as GNI) based on an extension of constrained Horn-clauses. Relational

properties of imperative programs can be verified by reducing them to validity problems in trace

logic [Barthe et al. 2019a]. Finally, the notion of hypercollecting semantics [Assaf et al. 2017] (similar

to our extended semantics) has been proposed to statically analyze information flow using abstract

interpretation [Cousot and Cousot 1977]. One major difference between our extended semantics

and this hypercollecting semantics is the treatment of loops. The former is defined directly on top

of the big-step semantics (Def. 4), whereas the latter is defined inductively, and, in the case of loops,

as a fixpoint over sets of sets of traces, which is more suitable for abstract interpretation, but less

precise than the extended semantics. This difference in precision matters for hyperproperties that

are not subset-closed (such as GNI) [Naumann and Ngo 2019; Pasqua 2019].

7 CONCLUSION AND FUTURE WORK

We have presented Hyper Hoare Logic, a novel, sound, and complete program logic that supports

reasoning about a wide range of hyperproperties. It is based on a simple but powerful idea: reasoning

directly about the set of states at a given program point, instead of a fixed number of states. We

have demonstrated that Hyper Hoare Logic is very expressive: It can be used to prove or disprove

any program hyperproperty over terminating executions, including ∃∗∀∗-hyperproperties and

hyperproperties relating an unbounded or infinite number of executions, which goes beyond

the properties handled by existing Hoare logics. Moreover, we have presented syntactic rules,

compositionality rules, and rules for loops that capture important proof principles naturally.

We believe that Hyper Hoare Logic is a powerful foundation for reasoning about the correctness

and incorrectness of program hyperproperties. We plan to build on this foundation in our future

work. First, we will explore automation for Hyper Hoare Logic by developing an encoding into an

SMT-based verification system such as Boogie [Leino 2008]. Second, we will extend the language

supported by the logic, in particular, to include a heap. The main challenge will be to adapt concepts

from separation logic to hyper-assertions, e.g., to find a suitable definition for the separating

conjunction of two hyper-assertions. Third, we will explore an extension of Hyper Hoare Logic

that can relate multiple programs.
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